CS 61A Fall 2017

Structure and Interpretation of Computer Programs

Quiz 8

INSTRUCTIONS

•	Y_{011}	have	10	minutes	tο	complet	e this	aniz
•	1 Ou	Have	10	mmuco	UU	Compice	C UIIIO	quiz.

- \bigcirc means mark a single choice

- The exam is closed book, closed notes, closed computer, closed calculator.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.

•	For multiple choice questions,	fill in	each	option	or o	choice	completely	у.
	 − □ means mark all optic 	ons th	at ap	ply				

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Discussion Section	
All the work on this exam is my own. (please sign)	

0. Your thoughts? If Scheme was a character, what would it look like?

(1)

scm> (factors 28) (1 2 4 7 14)

1. A Deep Problem deep-squares, which takes a deep list of numbers and returns a list with each value squared, is given below. 1 (define (deep-squares lol) (cond ((null? lol) '()) ((list? (car lol)) 3 (cons (map square (car lol)) 4 (deep-squares (cdr lol)))) 5 6 (else (cons (square (car lol)) (deep-squares (cdr lol)))))) For which of the following inputs will deep-squares not work as intended? O Works O Broken (deep-squares '()) (a) O Works O Broken (deep-squares '(1 (2 3) 4)) (b) (c) (deep-squares '(1 (2 3) ((4)) 5)) O Works O Broken Which line number contains the bug? $\bigcirc 1$ $\bigcirc 2$ $\bigcirc 3$ $\bigcirc 4$ $\bigcirc 5$ $\bigcirc 6$ $\bigcirc 7$ 2. ... That Factors Into Your Learning Implement the factors procedure in Scheme, which takes an integer n that is greater than 1 and returns a list of all of the factors of n from 1 to n - 1 in increasing order. You may not need to use all the lines. Hint: The built-in modulo procedure returns the remainder when dividing one number by the other. scm> (modulo 5 3) scm> (modulo 14 2) (define (factors n) (define (factors-helper i n) (if _____ nil (if _____))) (factors-helper _____)) scm> (factors 6) $(1 \ 2 \ 3)$ scm> (factors 7)