CS 61A Structure and Interpretation of Computer Programs Fall 2017 QUIZ 7

INSTRUCTIONS

- You have 10 minutes to complete this quiz.
- The exam is closed book, closed notes, closed computer, closed calculator.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.
- For multiple choice questions, fill in each option or choice completely.
 - \square means mark **all options** that apply
 - \bigcirc means mark a single choice

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Discussion Section	
All the work on this exam is my own. (please sign)	

0. Your thoughts? Draw your favorite Halloween costume idea!

1. Bubba Gump

Write the output displayed by the interactive Python interpreter when each expression below is evaluated.

```
class Tree:
    def __init__(self, label, branches=()):
        self.label = label
        self.branches = list(branches)
    def is_leaf(self):
        return not self.branches
    def __repr__(self):
        if self.is_leaf():
            return 'Tree(' + repr(self.label) + ')'
        return 'Tree(' + repr(self.label) + ', ' + repr(self.branches) + ')'
forrest = Tree(1)
gump = Tree(1, [forrest, forrest])
forrest.label = 2
forrest = Tree(forrest)
>>> run = Tree(forrest, gump.branches)
>>> run
```

>>> forrest.label = 1
>>> run

2. Seeing the Forest for the Trees

Implement all_paths which takes a Tree and returns a list of linked list paths from the root to each leaf.

```
def all_paths(t):
                                  class Link:
  .....
                                    empty = ()
                                    def __init__(self, first, rest=empty):
  >>> t = Tree(1, [Tree(2), Tree(3)])
  >>> all_paths(t)
                                       self.first = first
  [Link(1, Link(2)), Link(1, Link(3))]
                                       self.rest = rest
  .....
  if _____:
    return _____
  paths = []
              ------
    paths += _____
  return paths
```