CS 61A

Structure and Interpretation of Computer Programs

Fall 2017

INSTRUCTIONS

- You have 10 minutes to complete this quiz.
- The exam is closed book, closed notes, closed computer, closed calculator.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.
- For multiple choice questions, fill in each option or choice completely.
-means mark all options that apply
-means mark a single choice

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Discussion Section	
All the work on this exam is my own.	
(please sign)	

0 . Your thoughts? What makes you strong?

1. Oops! ... I Did It Again

(a) Suppose Britney wants to define a Person class.
class Person:
name = None
def __init__(self, name):
Person.name = name
def greet(self):
return 'Hello, my name is ' + self.name
John, however, sees a problem. Mark all appropriate criticisms of this implementation.Every Person's name will be equal to the most recently-created Person's name.Instantiating a Person will cause an error.Every Person's name will be None.Invoking greet on a person instance will cause an error.
(b) Consider the following simple class definition.

```
class Dog:
    def bark(self):
        print('woof!')
```

One day, while using this class, Britney decides she wants her dog, Lacey, to bark differently:
>>> lacey = Dog()
>>> lacey.bark = 'bow wow!'
Paul quickly points out that this won't work. "bark is supposed to be a method, not a string!" So Britney attempts to reset the bark method to what it was before:
>>> lacey.bark = Dog.bark
Paul isn't convinced this will fix it. Mark all appropriate statements about this assignment statement.Executing this assignment statement will cause an error.After this assignment, invoking lacey.bark() will cause an error.This assignment statement will have no effect at all.None of the above criticisms are valid.
(c) Mark all lines that should be removed so that the expression $N() . r()$ evaluates to 1 .
class M:
$p=2$
q = True
def r (self):
if self.q:
return self.p
return self.r() - 1
class $N(M)$:
$p=1$
q = False
def r (self):
return self.p + 1

