
CS 61A Delayed Expressions
Fall 2017 Discussion 9: November 8, 2017

1 Iterables and Iterators
>>> lst = [4, 2]

>>> i = iter(lst)

>>> j = iter(lst)

>>> i

<list_iterator object>

>>> next(i)

4

>>> next(i)

2

>>> next(j)

4

>>> next(i)

StopIteration

>>> next(j)

2

An iterable is any container that can be processed sequentially. Examples include

lists, tuples, strings, and dictionaries. Often we want to access the elements of an

iterable, one at a time. We find ourselves writing lst[0], lst[1], lst[2], and so

on. It would be more convenient if there was an object that could do this for us, so

that we don’t have to keep track of the indices.

This is where iterators come in. Given an iterable, we can call the iter function on

that iterable to return a new iterator object. Each time we call next on the iterator

object, it gives us one element at a time, just like we wanted. When it runs out

of elements to give, calling next on the iterator object will raise a StopIteration

exception.

We can create as many iterators as we would like from a single iterable. But, each

iterator goes through the elements of the iterable only once. If you want to go

through an iterable twice, create two iterators!

For Loops
>>> counts = [1, 2, 3]

>>> items = iter(counts)

>>> try:

... while True:

... item = next(items)

... print(item)

... except StopIteration:

... pass # Do nothing

...

1

2

3

By now, you are familiar with using for loops to iterate over iterables like lists and

dictionaries.

This only works because the for loop implicitly creates an iterator using the built-

in iter function. Python then calls next repeatedly on the iterator, until it raises

StopIteration. The code to the right is (basically) equivalent to using a for loop

to iterate over a list of [1, 2, 3].

Other Iterable Uses
We have already encountered functions that use and create iterables. Here are some

that we have seen (and some that we have not):

� range(start, end) - Creates iterable of numbers from start (inclusive) to end

(exclusive)

� map(f, iterable) - Creates iterator over f(x) for x in iterable

� filter(f, iterable) - Creates iterator over x for x in iterable if f(x)

� zip(iter1, iter2) - Creates iterator over co-indexed pairs (x, y)

� reversed(iterable) - Creates iterator sequence in reverse order

� list(iterable) - Creates a list containing all x in iterable

� tuple(iterable) - Creates a tuple containing all x in iterable



2 Delayed Expressions

� sorted(iterable) - Creates a sorted list containing all x in iterable

Questions
1.1 What would Python display?

>>> lst = [[1, 2]]

>>> i = iter(lst)

>>> j = iter(next(i))

>>> next(j)

>>> lst.append(3)

>>> next(i)

>>> next(j)

>>> next(i)

2 Generators
>>> def gen_naturals():

... current = 0

... while True:

... yield current

... current += 1

>>> gen = gen_naturals()

>>> gen

<generator object gen at ...>

>>> next(gen)

0

>>> next(gen)

1

A generator function is a special kind of Python function that uses a yield

statement instead of a return statement to report values. When a generator

function is called, it returns an iterator. To the right, you can see a function that

returns an iterator over the natural numbers.

2.1 yield

The yield statement is similar to a return statement. However, while a return

statement closes the current frame after the function exits, a yield statement causes

the frame to be saved until the next time next is called, which allows the generator

to automatically keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues

until the next yield statement or the end of the function. A generator function can

have multiple yield statements.

Including a yield statement in a function automatically tells Python that this

function will create a generator. When we call the function, it returns a generator

object instead of executing the the body. When the generator’s next method is

called, the body is executed until the next yield statement is executed.

>>> square = lambda x: x*x

>>> def many_squares(s):

... for x in s:

... yield square(x)

... yield from [square(x) \

for x in s]

... yield from map(square, s)

...

>>> list(many_squares([1, 2, 3]))

[1, 4, 9, 1, 4, 9, 1, 4, 9]

2.2 yield from

When yield from is called on an iterator, it will yield every value from that iter-

ator. It’s similar to doing the following:

for x in an_iterator:

yield x



Delayed Expressions 3

The example to the right demonstrates different ways of accomplishing the same

result.



4 Delayed Expressions

Questions
2.1 Write a generator function combiner that combines two input iterators using a given

combiner function. The resulting iterator should have a size equal to the size of the

shorter of its two input iterators.

>>> from operator import add

>>> evens = combiner(gen_naturals(), gen_naturals(), add)

>>> next(evens)

0

>>> next(evens)

2

>>> next(evens)

4

def combiner(iterator1, iterator2, combiner):

2.2 What is the result of executing this sequence of commands?

>>> nats = gen_naturals()

>>> doubled_nats = combiner(nats, nats, add)

>>> next(doubled_nats)

>>> next(doubled_nats)

2.3 Write a generator function gen_all_items that takes a list of iterators and yields

items from all of them in order.

def gen_all_items(lst):

"""

>>> nums = [[1, 2], [3, 4], [[5, 6]]]

>>> num_iters = [iter(l) for l in nums]

>>> list(gen_all_items(num_iters))

[1, 2, 3, 4, [5, 6]]

"""



Delayed Expressions 5

2.4 Write a generator function generate_subsets that returns all subsets of the positive

integers from 1 to n. Each call to this generator’s next method will return a list of

subsets of the set [1, 2, ..., n], where n is the number of previous calls to next.

def generate_subsets():

"""

>>> subsets = generate_subsets()

>>> for _ in range(3):

... print(next(subsets))

...

[[]]

[[], [1]]

[[], [1], [2], [1, 2]]

"""

3 Streams
In Python, we can use iterators to represent infinite sequences (for example, the

generator for all natural numbers). However, Scheme does not support iterators.

Let’s see what happens when we try to use a Scheme list to represent an infinite

sequence of natural numbers:

scm> (define (naturals n)

(cons n (naturals (+ n 1))))

naturals

scm> (naturals 0)

Error: maximum recursion depth exceeded

Because the second argument to cons is always evaluated, we cannot create an

infinite sequence of integers using a Scheme list.

Instead, our Scheme interpreter supports streams, which are lazy Scheme lists. The

first element is represented explicitly, but the rest of the stream’s elements are

computed only when needed. Computing a value only when it’s needed is also

known as lazy evaluation.

scm> (define (naturals n)

(cons-stream n (naturals (+ n 1))))

naturals

scm> (define nat (naturals 0))

nat

scm> (car nat)

0

scm> (car (cdr-stream nat))

1

scm> (car (cdr-stream (cdr-stream nat)))

2



6 Delayed Expressions

We use the special form cons-stream to create a stream. Note that cons-stream is

a special form, because the second operand (naturals (+ n 1))) is not evaluated

when cons-stream is called. It’s only evaluated when cdr-stream is used to inspect

the rest of the stream.

� nil is the empty stream

� cons-stream creates a non-empty stream from an initial element and an ex-

pression to compute the rest of the stream

� car returns the first element of the stream

� cdr-stream computes and returns the rest of stream

Streams are very similar to Scheme lists. The cdr of a Scheme list is either another

Scheme list or nil; likewise, the cdr-stream of a stream is either a stream or nil.

The difference is that the expression for the rest of the stream is computed the first

time that cdr-stream is called, instead of when cons-stream is used. Subsequent

calls to cdr-stream return this value without recomputing it. This allows us to

efficiently work with infinite streams like the naturals example above. We can see

this in action by using a non-pure function to compute the rest of the stream:

scm> (define (compute-rest n)

...> (print 'evaluating!)

...> (cons-stream n nil))

compute-rest

scm> (define s (cons-stream 0 (compute-rest 1)))

s

scm> (car (cdr-stream s))

evaluating!

1

scm> (car (cdr-stream s))

1

Note that the symbol evaluating! is only printed the first time cdr-stream is

called.

Questions
3.1 What would Scheme display?

scm> (define (has-even? s)

(cond ((null? s) #f)

((even? (car s)) #t)

(else (has-even? (cdr-stream s)))))

has-even?

scm> (define (f x) (* 3 x))

f

scm> (define nums (cons-stream 1 (cons-stream (f 3) (cons-stream (f 5) nil))))

nums



Delayed Expressions 7

scm> nums

scm> (cdr nums)

scm> (cdr-stream nums)

scm> (define (f x) (* 2 x))

f

scm> (cdr-stream nums)

scm> (has-even? nums)

3.2 Using streams can be tricky! Compare the following two implementations of filter-stream,

the first is a correct implementation whereas the second is wrong in some way.

What’s wrong with the second implementation?

; Correct

(define (filter-stream f s)

(cond

((null? s) nil)

((f (car s)) (cons-stream (car s) (filter-stream f (cdr-stream s))))

(else (filter-stream f (cdr-stream s)))))

; Incorrect

(define (filter-stream f s)

(if (null? s) nil

(let ((rest (filter-stream f (cdr-stream s))))

(if (f (car s))

(cons-stream (car s) rest)

rest))))

3.3 Write a function map-stream, which takes a function f and a stream s. It returns a

new stream which has all the elements from s, but with f applied to each one.

(define (map-stream f s)

scm> (define evens (map-stream (lambda (x) (* x 2)) nat))

evens

scm> (car (cdr-stream evens))

2



8 Delayed Expressions

3.4 Write a function range-stream which takes a start and end, and returns a stream

that represents the integers between start and end - 1 (inclusive).

(define (range-stream start end)

scm> (define s (range-stream 1 5))

s

scm> (car (cdr-stream s))

2

3.5 Write a function slice which takes in a stream s, a start, and an end. It should

return a Scheme list that contains the elements of s between index start and end,

not including end. If the stream ends before end, you can return nil.

(define (slice s start end)

scm> (slice nat 4 12)

(4 5 6 7 8 9 10 11)

3.6 Since streams only evaluate the next element when they are needed, we can combine

infinite streams together for interesting results! Use it to define a few of our favorite

sequences. We’ve defined the function combine-with for you below, as well as an

example of how to use it to define the stream of even numbers.

(define (combine-with f xs ys)

(if (or (null? xs) (null? ys))

nil

(cons-stream

(f (car xs) (car ys))

(combine-with f (cdr-stream xs) (cdr-stream ys)))))

scm> (define evens (combine-with + (naturals 0) (naturals 0)))

evens

scm> (slice evens 0 10)

(0 2 4 6 8 10 12 14 16 18)

For these questions, you may use the naturals stream in addition to combine-with.

(Continued on the next page)



Delayed Expressions 9

i. (define factorials

scm> (slice factorials 0 10)

(1 1 2 6 24 120 720 5040 40320 362880)

ii. (define fibs

scm> (slice fibs 0 10)

(0 1 1 2 3 5 8 13 21 34)

iii. Write exp, which returns a stream where the nth term represents the degree-n

polynomial expantion for ex, which is
∑n

i=0 x
i/i!.

You may use factorials in addition to combine-with and naturals in your

solution.

(define (exp x)

scm> (slice (exp 2) 0 5)

(1 3 5 6.333333333 7 7.266666667)


