
CS 61A Linked Lists and Midterm Review
Fall 2017 Discussion 6: October 11, 2017

1 Linked Lists
There are many different implementations of sequences in Python. Today, we’ll

explore the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value

and the rest of the linked list.

To check if a linked list is an empty linked list, compare it agains the class attribute

Link.empty:

if link is Link.empty:

print('This linked list is empty!')

else:

print('This linked list is not empty!')

Implementation
class Link:

empty = ()

def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)

self.first = first

self.rest = rest

def __getitem__(self, i):

if i == 0:

return self.first

return self.rest[i-1]

def __len__(self):

return 1 + len(self.rest)

def __repr__(self):

if self.rest is Link.empty:

return 'Link({})'.format(self.first)

else:

return 'Link({}, {})'.format(self.first,

repr(self.rest))



2 Linked Lists and Midterm Review

Questions
1.1 Write a recursive function flip two that takes as input a linked list lnk and mutates

lnk so that every pair is flipped.

def flip_two(lnk):

"""

>>> one_lnk = Link(1)

>>> flip_two(one_lnk)

>>> one_lnk

Link(1)

>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))

>>> flip_two(lnk)

>>> lnk

Link(2, Link(1, Link(4, Link(3, Link(5)))))

"""

1.2 Write a function remove_duplicates that takes as input a sorted linked list of

integers, lnk, and mutates lnk so that all duplicates are removed.

def remove_duplicates(lnk):

"""

>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))

>>> unique = remove_duplicates(lnk)

>>> len(unique)

2

>>> len(lnk)

2

"""



Linked Lists and Midterm Review 3

1.3 Define reverse, which takes in a linked list and reverses the order of the links.

The function may not return a new list; it must mutate the original list. Return a

pointer to the head of the reversed list.

def reverse(lnk):

"""

>>> a = Link(1, Link(2, Link(3)))

>>> r = reverse(a)

>>> r.first

3

>>> r.rest.first

2

"""

1.4 Write multiply lnks, which takes in a Python list of Link objects and multiplies

them element-wise. It should return a new linked list. If not all of the Link objects

are of equal length, return a linked list whose length is that of the shortest linked

list given. You may assume the Link objects are shallow linked lists, and that

lst of lnks contains at least one linked list.

def multiply_lnks(lst_of_lnks):

"""

>>> a = Link(2, Link(3, Link(5)))

>>> b = Link(6, Link(4, Link(2)))

>>> c = Link(4, Link(1, Link(0, Link(2))))

>>> p = multiply_lnks([a, b, c])

>>> p.first

48

>>> p.rest.first

12

>>> p.rest.rest.rest

()

"""



4 Linked Lists and Midterm Review

2 Midterm Review
2.1 Define a function even_weighted that takes in a list lst and returns a new list that

keeps only the even-indexed elements of lst and multiplies each of those elements

by the corresponding index.

def even_weighted(lst):

"""

>>> x = [1, 2, 3, 4, 5, 6]

>>> even_weighted(x)

[0, 6, 20]

"""

return [_________________________________________________]

2.2 The quicksort sorting algorithm is an efficient and commonly used algorithm to

order the elements of a list. We choose one element of the list to be the pivot

element and partition the remaining elements into two lists: one of elements less

than the pivot and one of elements greater than the pivot. We recursively sort the

two lists, which gives us a sorted list of all the elements less than the pivot and all

the elements greater than the pivot, which we can then combine with the pivot for

a completely sorted list.

First, implement the quicksort list function. Choose the first element of the list

as the pivot. You may assume that all elements are distinct.

def quicksort_list(lst):

"""

>>> quicksort_list([3, 1, 4])

[1, 3, 4]

"""

if _____________________________________________________:

_____________________________________________________

pivot = lst[0]

less = __________________________________________________

greater = _______________________________________________

return __________________________________________________



Linked Lists and Midterm Review 5

2.3 We can also use quicksort to sort linked lists! Implement the quicksort link func-

tion, without constructing additional Link instances.

You can assume that the extend_links function is already defined. It takes two

linked lists and mutates the first so that the ending node points to the second.

extend link returns the head of the first linked list.

>>> l1, l2 = Link(1, Link(2)), Link(3, Link(4))

>>> l3 = extend_links(l1, l2)

>>> l3

Link(1, Link(2, Link(3, Link(4))))

>>> l1 is l3

True

def quicksort_link(link):

"""

>>> s = Link(3, Link(1, Link(4)))

>>> quicksort_link(s)

Link(1, Link(3, Link(4)))

"""

if _____________________________________________________:

return link

pivot, _______ = ________________________________________

less, greater = _________________________________________

while link is not Link.empty:

curr, rest = link, link.rest

if _________________________________________________:

_________________________________________________

else:

_________________________________________________

link = ______________________________________________

less = __________________________________________________

greater = _______________________________________________

_________________________________________________________

return __________________________________________________



6 Linked Lists and Midterm Review

2.4 Implement the functions max product, which takes in a list and returns the max-

imum product that can be formed using nonconsecutive elements of the list. The

input list will contain only numbers greater than or equal to 1.

def max_product(lst):

"""Return the maximum product that can be formed using lst

without using any consecutive numbers

>>> max_product([10,3,1,9,2]) # 10 * 9

90

>>> max_product([5,10,5,10,5]) # 5 * 5 * 5

125

>>> max_product([])

1

"""

2.5 An expression tree is a tree that contains a function for each non-leaf node,

which can be either ’+’ or ’*’. All leaves are numbers. Implement eval_tree,

which evaluates an expression tree to its value. You may want to use the functions

sum and prod, which take a list of numbers and compute the sum and product

respectively.

def eval_tree(tree):

"""Evaluates an expression tree with functions the root.

>>> eval_tree(tree(1))

1

>>> expr = tree('*', [tree(2), tree(3)])

>>> eval_tree(expr)

6

>>> eval_tree(tree('+', [expr, tree(4), tree(5)]))

15

"""



Linked Lists and Midterm Review 7

2.6 Implement widest level, which takes a Tree instance and returns the elements at

the depth with the most elements.

In this problem, you may find it helpful to use the second optional argument to sum,

which provides a starting value. All items in the sequence to be summed will be

concatenated to the starting value. By default, start will default to 0, which allows

you to sum a sequence of numbers. We provide an example of sum starting with a

list, which allows you to concatenate items in a list.

def widest_level(t):

"""

>>> sum([[1], [2]], [])

[1, 2]

>>> t = Tree(3, [Tree(1, [Tree(1), Tree(5)]),

... Tree(4, [Tree(9, [Tree(2)])])])

>>> widest_level(t)

[1, 5, 9]

"""

levels = []

x = [t]

while __________________________________________________:

_____________________________________________________

__________ = sum(_______________________________, [])

return max(levels, key=_________________________________)

2.7 Complete redundant map, which takes a tree t and a function f, and applies f to

the node (2d) times, where d is the depth of the node. The root has a depth of 0.

def redundant_map(t, f):

"""

>>> double = lambda x: x*2

>>> tree = Tree(1, [Tree(1), Tree(2, [Tree(1, [Tree(1)])])])

>>> print_levels(redundant_map(tree, double))

[2] # 1 * 2 ˆ (1) ; Apply double one time

[4, 8] # 1 * 2 ˆ (2), 2 * 2 ˆ (2) ; Apply double two times

[16] # 1 * 2 ˆ (2 ˆ 2) ; Apply double four times

[256] # 1 * 2 ˆ (2 ˆ 3) ; Apply double eight times

"""

t.label = _______________________________

new_f = ______________________________________________

t.branches = ___________________________________________

return t


