
CS 61A Lost on the Moon
Fall 2017 Discussion 0: August 23, 2017

Your spaceship has just crashed on the moon. You were scheduled to ren-

dezvous with a mother ship 200 miles away on the lighted surface of the

moon, but the rough landing has ruined your ship and destroyed all the

equipment on board except for the 15 items listed below.

Your crew’s survival depends on reaching the mother ship, so you must

choose the most critical items available for the 200-mile trip.

Your task is to rank the 15 items in terms of their importance for survival.

Place a number 1 by the most important item, number 2 by the second most

important, and so on, through number 15, the least important.

Item
Your

Rank (1)

Group’s

Rank (2)

NASA’s

Rank (3)
|(3)− (1)| |(3)− (2)|

Box of matches

Food concentrate

50 feet of nylon rope

Parachute silk

Solar-powered portable heating unit

Two .45 caliber pistols

One case of dehydrated milk

Two 100-pound tanks of oxygen

Stellar map (of the moon’s constellations)

Self-inflating life raft

Magnetic compass

5 gallons of water

Signal flares

First-aid kit containing injection needles

Solar-powered FM receiver-transmitter

Total

2 Lost on the Moon

1 Secrets to Success in CS 61A
CS 61A is definitely a challenge, but we all want you to learn and succeed,

so here are a few tips that might help:

� Ask questions. When you encounter something you don’t know, ask.

That is what we are here for. This is not to say you should raise your

hand impulsively; some usage of the brain first is preferred. You are

going to see a lot of challenging stuff in this class, and you can always

come to us for help.

� Study in groups. Again, this class is not trivial; you might feel over-

whelmed going at it alone. Work with someone, either on homework,

on lab, or for midterms, as long as you don‘t violate the cheating policy!

� Go to office hours. Office hours give you time with the instructor or

TAs by themselves, and you will be able to get some (nearly) one-

on-one instruction to clear up confusion. You are not intruding; the

instructors and TAs like to teach! Remember that, if you cannot make

office hours, you can always make separate appointments with us!

� Do (or at least attempt seriously) all the homework. We do not give

many homework problems, but those we do give are challenging, time-

consuming, and rewarding. The fact that homework is graded on effort

does not imply that you should ignore it: it will be one of your primary

sources of preparation and understanding.

� Do all the lab exercises. Most of them are simple and take no more

than an hour or two. This is a great time to get acquainted with new

material. If you do not finish, work on it at home, and come to office

hours if you need more guidance!

� Do the readings before lecture! There is a reason why they are assigned.

And it is not because we are evil; that is only partially true.

� Most importantly, have fun!

Lost on the Moon 3

Solving Problems
Based on original research by Loksa, Ko, et al.

Reinterpret the problem prompt
Read and reinterpret the question. Usually, we begin with a description of

the problem to be solved. What’s important is not just reading the problem,

but thinking critically about the implications of the details in the problems

and clear up any ambiguities. When we jump into coding directly with-

out first thinking through the problem and posing questions for ourselves,

we often run into scenarios where we get stuck and need to ask ourselves,

“What should I put here?” or “What is the right loop end condition?” This

increases the cognitive load by requiring us to context-switch and remove

ourselves from the problem while we answer a side question.

A couple concrete starting questions to ask yourself on any problem include:

� What is the domain (input) and range (output) of the program?

� Restate the intended behavior of the program in your own words.

� How will the values in this program change as the program executes?

Verify your understanding by studying the doctests. In computer science,

the mental representation for a problem is often closely related to its solution.

Big hints are always given away in the doctest! The doctests inform

us about the shape and format of the solution. If we look closely enough

for the patterns in the doctest, we’ll often expose details in the structure of

how the problem is meant to be solved.

Although they provide many hints, the doctests are not exhaustive and they

usually don’t show the most important cases. Develop examples that cover

at least the following situations:

� What’s the smallest or simplest possible input I could give to this

function?

� Is there a similar small input that is invalid for this problem? How is

it related to or different from the earlier case?

� Can we come up with any larger inputs to the program that are related

to or rely on smaller cases? The idea is to come up with some of the

subproblems we might have to solve with recursion or other techniques.

http://dx.doi.org/10.1145/2858036.2858252

4 Lost on the Moon

Search for analogous problems
Does this problem look similar to something you’ve seen before? Armed

with your experience from homework, lab, and discussion, develop a general

idea of how to solve the problem.

Once we’ve identified a similar problem, we can then extract the general

strategy for solving the problem. While details are useful, copy-and-pasting

the solution from the analogous problem usually won’t get us very far. In-

stead, verbalize the code and reinterpret it in English by asking, “What’s

the purpose of including this code?”

Adapting previous solutions
Implement a solution by applying the problem solving techniques you’ve

learned alongside your experience with analogous problems. With recursion,

for example, it helps to try to follow the steps of finding a base case, iden-

tifying the recursive calls, and then combining the results. However, the

particular implementation in code will depend upon the specific details of

the problem.

It might not be fully correct, but that’s fine and completely normal; refining

mental representations of the problem takes time and practice.

Evaluating solutions
Analyze and test the resulting implementation. We’d like to answer two

central questions:

1. Is my approach on the right track? If not, maybe we should consider

another analogous problem.

2. If my approach is in the right direction, let’s evaluate and verify the

correctness of the solution.

To improve our code, we just need to ask ourselves the right ques-

tions. What input would break the program? Think like Python: run

through the code step-by-step until there’s a problem. We have examples

of what the output should look like, so make sure the actual result matches

expectations.

If the results aren’t consistent, let’s try to identify why and make adjustments

by asking more specific questions. Where is the root of problem? Let’s trace

back through the code to find the source of the problem. Then, once we’ve

found the problem, let’s try the same approach of searching for analogous

problems, except on this one, particular subproblem.

