
61A Lecture 21

Announcements

Binary Trees

Binary Tree Class

A binary tree is a tree that has
a left branch and a right branch

Idea: Fill the place of a missing
left branch with an empty tree

Idea 2: An instance of BTree
always has exactly two branches

4

7

3

1

5 9

11
E

E: An empty tree

E E

E E

E E

class BTree(Tree):
 empty = Tree(None)

 def __init__(self, label, left=empty, right=empty):
 Tree.__init__(self, label, [left, right])

 @property
 def left(self):
 return self.branches[0]

 @property
 def right(self):
 return self.branches[1]

t = BTree(3, BTree(1),
 BTree(7, BTree(5),
 BTree(9, BTree.empty,
 BTree(11))))

(Demo)

Binary Search Trees

Binary Search

A strategy for finding a value in a sorted list: check the middle and eliminate half

6

[1, 2, 4, 8, 16, 32, 64]

[1, 2, 4, 8, 16, 32, 64]

[1, 2, 4, 8, 16, 32, 64]20 in

False

[1, 2, 4, 8, 16, 32]

[1, 2, 4, 8, 16, 32, 64]

[1, 2, 4, 8, 16, 32]4 in

True

For a sorted list of length n, what Theta expression describes the time required? ⇥(log n)

Binary Search Trees

A binary search tree is a binary tree where each node’s label is:

• Larger than all node labels in its left branch and

• Smaller than all node labels in its right branch

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

7

(Demo)

Discussion Questions

What's the largest element
in a binary search tree?

def largest(t):

 if _________________________:

 return _________________

 else:

 return _________________

What's the second largest element
in a binary search tree?

def second(t):

 if t.is_leaf():

 return None

 elif _______________________:

 return _________________

 elif _______________________:

 return t.label

 else:

 return _________________

t.right is BTree.empty

t.label

largest(t.right)

5

3

1 7

9

11

t.right is BTree.empty

largest(t.left)

t.right.is_leaf()

second(t.right)

5

3

1 7

9

8

Sets as Binary Search Trees

Membership in Binary Search Trees

contains traverses the tree

• If the element is not at the root, it can only be in either the left or right branch

• By focusing on one branch, we reduce the set by the size of the other branch

5

3

1 7

9

11

def contains(s, v):
 if s is BTree.empty:
 return False
 elif s.label == v:
 return True
 elif s.label < v:
 return contains(s.right, v)
 elif s.label > v:
 return contains(s.left, v)

9

If 9 is in the
set, it is in
this branch

Order of growth?
10

on average⇥(h) ⇥(log n) on average for a balanced tree

Adjoining to a Tree Set

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

E E

8

E

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8 (Demo)
11

