
61A Lecture 19

Announcements

Tree Class

Tree Review

4

2

3

1

0 1 1 1

0 1

Tree Review

4

Recursive description (wooden trees):

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Label value

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Label value

Branch

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Label value

Branch

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Label value

Branch

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

1 1

0 1

Label value

Branch

Leaf

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

1 1

0 1

Label value

Branch

Leaf

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

1 1

0 1

Label value

Branch

Leaf

Nodes

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

1 1

0 1

Label value

Branch

Leaf

Nodes

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

1 1

0 1

Label value

Branch

Leaf

Label Values

Nodes

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

One node can be the parent/child of another

1 1

0 1

Label value

Branch

Leaf

Label Values

Nodes

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

One node can be the parent/child of another

Top node of tree is its root

1 1

0 1

Label value

Branch

Leaf

Label Values

Nodes

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

One node can be the parent/child of another

Top node of tree is its root

1 1

0 1

Label value

Branch

Leaf

Label Values

Nodes
Root of whole tree

Root of branch

Tree Review

4

Recursive description (wooden trees):

A tree has a label value and a list of branches

Each branch is a tree
A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

One node can be the parent/child of another

Top node of tree is its root

1 1

0 1

Label value

Branch

Leaf

Label Values

NodesPath
Root of whole tree

Root of branch

Tree Class

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

5

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

5

A Tree has a label value and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

5

A Tree has a label value and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

5

A Tree has a label value and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

Tree Class

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

def fib_tree(n):
 if n == 0 or n == 1:
 return Tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = left.label + right.label
 return Tree(fib_n, [left, right])

(Demo)
5

A Tree has a label value and a list of branches; each branch is a Tree

 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)
def label(tree):
 return tree[0]
def branches(tree):
 return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
 if n == 0 or n == 1:
 return tree(n)
 else:
 left = fib_tree(n-2)
 right = fib_tree(n-1)
 fib_n = label(left) + label(right)
 return tree(fib_n, [left, right])

Side Excursion: Equality

If x and y are two objects, the equality test, x == y, does not automatically mean what
you want it to mean.

For example, but after performing x = Tree(4), we do have x == x

The reason for this is that in Python,

• All values (conceptually, at least) are in fact pointers to objects, and

• By default, == on pointers compares the pointers themselves (“are these pointing at
exactly the same object?”).

• That is, by default == and != are the same as the is and is not operators.

• That can be changed on a class-by-class basis. For example, == on numbers, lists,
tuples, strings, sets, and dictionaries means what we expect: the contents are the
same.

6

Tree(4) != Tree(4)

Tree Mutation

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

2

3

1

0 1 1 1

0 1

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

2

3

1

0 1 1 1

0 1

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

def prune(t, n):

 """Prune sub-trees whose label value is n."""

 t.branches = [______________ for b in t.branches if _____________________]

 for b in t.branches:

 prune(_______________________________, _______________________________)

2

3

1

0 1 1 1

0 1

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

def prune(t, n):

 """Prune sub-trees whose label value is n."""

 t.branches = [______________ for b in t.branches if _____________________]

 for b in t.branches:

 prune(_______________________________, _______________________________)

2

3

1

0 1 1 1

0 1

b b.label != n

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

def prune(t, n):

 """Prune sub-trees whose label value is n."""

 t.branches = [______________ for b in t.branches if _____________________]

 for b in t.branches:

 prune(_______________________________, _______________________________)

2

3

1

0 1 1 1

0 1

b b.label != n

b n

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

8

def prune(t, n):

 """Prune sub-trees whose label value is n."""

 t.branches = [______________ for b in t.branches if _____________________]

 for b in t.branches:

 prune(_______________________________, _______________________________)

2

3

1

0 1 1 1

0 1

b b.label != n

b n

(Demo)

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees
Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

9

Returned by fib

Found in cache

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

(Demo)

Memoization:

E.g., want to prune
cached (previously
memorized) values.

Hailstone Trees

Hailstone Trees

11

Hailstone Trees

Pick a positive integer n as the start

11

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

11

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

11

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8
(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

5

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

3

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

21 3

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

21 3All possible n that start a  
length-8 hailstone sequence

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

21 3All possible n that start a  
length-8 hailstone sequence

def hailstone_tree(k, n=1):
 """Return a Tree in which the paths from the
 leaves to the root are all possible hailstone
 sequences of length k ending in n."""

(Demo)

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

11

1

2

4

8

16

32

64

128

10

20

5

21 3All possible n that start a  
length-8 hailstone sequence

(Demo)

def hailstone_tree(k, n=1):
 """Return a Tree in which the paths from the
 leaves to the root are all possible hailstone
 sequences of length k ending in n."""

(Demo)

