61A Lecture 19

Announcements

Tree Class

Tree Review

Tree Review

/
0

3
1 2
AN VRN
1 1 1
VRN
0 1

Recursive description (wooden trees): Relative description (family trees):

Tree Review

/
0

3
1 2
AN /
1 1

1
AN

0 1

AN
/

(wooden trees): Relative description (family trees):

A tree has a label value and a list of branches

Tree Review

/
0

3
1 2
AN /
1 1

1
AN

0 1

AN
/

(wooden trees): Relative description (family trees):

A tree has a label value and a list of branches

Tree Review

Label value——p3

VAN

Branch—bg :
N VAN
0 1 1 1
VRN
__________________________________ 0 1
Recursive description (wooden trees): Relative description (family trees):

A tree has a label value and a list of branches

Tree Review

Label value——p3

Branch—bg
' VAN

Recursive description (wooden trees):
A tree has a label value and a list of branches

Each branch is a tree

VAN

VRN

Relative description (family trees):

Tree Review

3
1 2
VRN VAN
0 1 1 1
VRN
__________________________________ 0 1
(wooden trees): Relative description (family trees):

A tree has a label value and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

Tree Review

3
1 2
A S LN
0 1 1 1
S VRN
__________________________________ 0 1
(wooden trees): Relative description (family trees):

A tree has a label value and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

Tree Review

3
1 2
R N
0 1 1 1
SR VAN
__________________________________ 0 1
(wooden trees): Relative description (family trees):
A tree has a label value and a list of branches Each location in a tree is called a node

Each branch is a tree
A tree with zero branches is called a leaf

Tree Review

Nodes

(wooden trees): Relative description (family trees):
A tree has a label value and a list of branches Each location in a tree is called a node

Each branch is a tree
A tree with zero branches is called a leaf

Tree Review

(wooden trees):
A tree has a label value and a list of branches
Each branch is a tree

A tree with zero branches is called a leaf

Nodes

ORO

Relative description (family trees):
Each location in a tree is called a node

Each node has a value

Tree Review

Recursive description (wooden trees): Relative description (family trees):
A tree has a label value and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a value

A tree with zero branches is called a leaf

Tree Review

(wooden trees):
A tree has a label value and a list of branches
Each branch is a tree

A tree with zero branches is called a leaf

Relative description (family trees):
Each location in a tree is called a node
Each node has a value

One node can be the parent/child of another

Tree Review

(wooden trees):
A tree has a label value and a list of branches
Each branch is a tree
A tree with zero branches is called a leaf

Relative description (family trees):

Each location in a tree is called a node
Each node has a value

One node can be the parent/child of another

Top node of tree is its root

Tree Review

Root of whole tree \\\‘
£3)

(wooden trees): Relative description (family trees):
A tree has a label value and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a value
A tree with zero branches is called a leaf One node can be the parent/child of another
Top node of tree is its root

Tree Review

Root of whole tree \\\‘
Label valueA@

Root of branch ~\\\\\ﬁk
Branch—bg e

Recursive description (wooden trees):

A tree has a label value and a list of branches
Each branch is a tree

A tree with zero branches is called a leaf

Relative description (family trees):

Each location in a tree is called a node
Each node has a value

One node can be the parent/child of another

Top node of tree is its root

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:

def init (self, label, branches=[]):
self.label = label

def tree(label, branches=I[]):
for branch in branches:

for branch in branches: assert is_tree(branch)
assert isinstance(éranch, Tree) return [label] + list(branches)
self.branches = list(branches) def label(tree):

return treel[0]
def branches(tree):
return treel[1:]

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:

def init (self, label, branches=[]):
self.label = label

def tree(label, branches=I[]):
for branch in branches:

for branch in branches: assert is_tree(branch)
assert isinstance(éranch, Tree) return [label] + list(branches)
self.branches = list(branches) def label(tree):

return tree(0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n == 0 or n ==
return Tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])

def tree(label, branches=I[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n ==0 or n ==
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

Tree Class

A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])

(Demo)

def tree(label, branches=I[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n ==0 or n ==
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])

Side Excursion: Equality

If x and y are two objects, the equality test, x ==y, does not automatically mean what
you want it to mean.

For example, Tree(4) '= Tree(4) but after performing x = Tree(4), we do have x == X
The reason for this is that in Python,
- A1l values (conceptually, at least) are in fact pointers to objects, and

« By default, == on pointers compares the pointers themselves (“are these pointing at
exactly the same object?”).

- That is, by default == and != are the same as the is and is not operators.

- That can be changed on a class-by-class basis. For example, == on numbers, lists,
tuples, strings, sets, and dictionaries means what we expect: the contents are the
same.

Tree Mutation

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

AN

Prune branches before
recursive processing

def prune(t, n):
"""Prune sub-trees whose label value is n."""

t.branches = [for b in t.branches if

for b in t.branches:

prune()

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):

"""Prune sub-trees whose label value is n."""

b b.label '= n

t.branches = [for b in t.branches if

for b in t.branches:

prune()

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):

"""Prune sub-trees whose label value is n."""

b b.label '= n

t.branches = [for b in t.branches if

for b in t.branches:

prune(b , n

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):

"""Prune sub-trees whose label value is n."""

t.branches = [b for b in t.branches if b.label !=n
for b in t.branches:
prune(b , n

(Demo)

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization:

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: : ({K
L / N / AN
® Returned by fib - .
Returned by Tib - | fib(0) fib(1) % ifib(1) fib(2)
e l | I | / AN
0 1 1 fib(o) fib(1)

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: : ({K
o / N / AN
@ Returned by fib
Returned by Tib X | | fib(@) fib(1) " ifib(1) £ib(2)
@ Found in cache e t | I | / AN
0 1 1 fib(0) fib(1)

Example: Pruning Trees
Removing subtrees from a

tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization:
@ Returned by fib
@ Found in cache

O Skipped

fib(0Q) fib(1)
| |
0 1

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: : ({K
b / N / AN
Returned by Tib X | | fib(@) fib(1) " ifib(1) £ib(2)
@ Found in cache 0 ________________________ 1 ; \ \ : \ / N
- 1 S 4 1 fib(0) fib(1)
O Skipped A '

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: : ({K
o / N / AN
® Returned by fib ! | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache - ' P I | / AN
L9 1 1 fib(0) fib(1)
O Skipped h

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: : ({K
o / N / AN
® Returned by fib ! | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache e 1 P I | / AN
. Lo 1 1 fib(e) fib(1)
O Skipped h

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Hemoization: =.‘ fib(@) fib(1) Y \ p N
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ -"' \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped h

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Hemoization: =.‘ fib(@) fib(1) Y \ p N
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ -"' \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped h

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memo1zation: i fib(e) fib(1) y O Y N
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 ; ‘ ‘ ": ‘ / N
. Lo 1 1 fib(0) fib(1)
O Skipped ;

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: :,‘ fib(@) fib(1) p N Y N
® ; R .
Returned by Tib - | fib(0) fib(1) % ifib(1) fib(2)
@ Found in cache 0. _______________________ 1 P . / AN
- 1 S 4 1 fib(0) fib(1)
O Skipped A

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ -"' \ / AN
. Lo 1 1 fib(e) fib(1)
O Skipped e O o e

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ -"' \ / AN
. Lo 1 1 fib(e) fib(1)
O Skipped e O o e

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\‘ // \\\
T Q
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\’ // \\\
T Q
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i fib(0) fib(1) // \\:\’ // \\\
T Q
® Returned by fib | | | fib(0) fib(1) ™ ifib(1) fib(2)
@ Found in cache 6. _______________________ 1 : \ \ ; \ / AN
. Lo 1 1 fib(0) fib(1)
O Skipped e Qe o e 3

Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

E.g., want to prune
cached (previously
memorized) values.

Memoization: i £ib(0) fib(1) // \\:\’ // \\\
o ib O o Q
Returned by Tib - | fib(0) fib(1) % ifib(1) fib(2)
@ Found in cache e 1 P I | / AN
_ L0 1 1 fib(0) fib(1)
O Skipped D S o e 3 ‘ ‘
. 0 1
(Demo) O o

Hailstone Trees

Hailstone Trees

Hailstone Trees

Pick a positive integer n as the start

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

16

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

16
32

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

16
32

64

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1 1

Continue this process until n is 1 2

(Demo)

16
32

64

128

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1 1
Continue this process until n is 1 2
(Demo) 4

8

|

16

32

64

128

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

—0o— A —N—R

128

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

1
)
.
g
6
2 s

128 20

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

1
)
.
g
6
2 s

128 20

3

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

1
)
.
g
6
2 s

128 21 20

3

Hailstone Trees

Pick a positive integer n as the start

If n is even, divide it by 2

If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

All possible n that start a
length-8 hailstone sequence

1
)
.
g
6
2 s

> 128\21 2@\

3

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

def hailstone tree(k, n=1):
"""Return a Tree in which the paths from the
leaves to the root are all possible hailstone
sequences of length k ending in n."""

All possible n that start a
length-8 hailstone sequence

1
)
.
g
6
2 s
64 10

> 128\21 2@\

3

Hailstone Trees

Pick a positive integer n as the start
If n is even, divide it by 2
If n is odd, multiply it by 3 and add 1

Continue this process until n is 1

(Demo)

def hailstone tree(k, n=1):
"""Return a Tree in which the paths from the
leaves to the root are all possible hailstone
sequences of length k ending in n."""

All possible n that start a
length-8 hailstone sequence

(Demo)

1
)
.
g
6
2 s
64 10

N
} 128 21 20

3

