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A Tree has a label value and a list of branches; each branch is a Tree

class Tree:
def init  (self, label, branches=[]):
self.label = label
for branch in branches:
assert isinstance(branch, Tree)
self.branches = list(branches)

def fib_tree(n):

if n==0 or n ==
return Tree(n)

else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = left.label + right.label
return Tree(fib_n, [left, right])
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def tree(label, branches=I[]):
for branch in branches:
assert is_tree(branch)
return [label]l + list(branches)
def label(tree):
return treel0]
def branches(tree):
return tree[1:]
def fib_tree(n):
if n ==0 or n ==
return tree(n)
else:
left = fib_tree(n-2)
right = fib_tree(n-1)
fib_n = label(left) + label(right)
return tree(fib_n, [left, right])



Side Excursion: Equality

If x and y are two objects, the equality test, x ==y, does not automatically mean what
you want it to mean.

For example, Tree(4) '= Tree(4) but after performing x = Tree(4), we do have x == X
The reason for this is that in Python,
- A1l values (conceptually, at least) are in fact pointers to objects, and

« By default, == on pointers compares the pointers themselves (“are these pointing at
exactly the same object?”).

- That is, by default == and != are the same as the is and is not operators.

- That can be changed on a class-by-class basis. For example, == on numbers, lists,
tuples, strings, sets, and dictionaries means what we expect: the contents are the
same.
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Example: Pruning Trees

Removing subtrees from a
tree is called pruning

Prune branches before
recursive processing

def prune(t, n):

"""Prune sub-trees whose label value is n."""

t.branches = [ b for b in t.branches if b.label !=n
for b in t.branches:
prune( b , n

(Demo)
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