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Side Excursion: Equality

If x and y are two objects, the equality test, x == y, does not automatically mean what 
you want it to mean. 

For example,                     but after performing x = Tree(4), we do have x == x 

The reason for this is that in Python, 

• All values (conceptually, at least) are in fact pointers to objects, and 

• By default, == on pointers compares the pointers themselves (“are these pointing at 
exactly the same object?”). 

• That is, by default == and != are the same as the is and is not operators. 

• That can be changed on a class-by-class basis.  For example, == on numbers, lists, 
tuples, strings, sets, and dictionaries means what we expect: the  contents are the 
same.

6

Tree(4) != Tree(4)  
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def hailstone_tree(k, n=1): 
    """Return a Tree in which the paths from the  
    leaves to the root are all possible hailstone  
    sequences of length k ending in n."""
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def hailstone_tree(k, n=1): 
    """Return a Tree in which the paths from the  
    leaves to the root are all possible hailstone  
    sequences of length k ending in n."""
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