
61A Lecture 16 Announcements

Attributes

Class 
Attributes 

Functions 

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

Terminology: Python object system:

4

<instance>.<method_name>

Reminder: Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

5

Attribute Assignment

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies the
attribute named
“interest” of
tom_account

Instance
Attribute
Assignment

:

Account.interest = 0.04
Class
Attribute
Assignment

:

This expression
evaluates to an

object

7

class Account:
 interest = 0.02
 def __init__(self, holder):
 self.holder = holder
 self.balance = 0
 ...

tom_account = Account('Tom')

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Inheritance

 Inheritance

Inheritance is a technique for relating classes together

A common use: Two similar classes differ in their degree of specialization

The specialized class may have the same attributes as the general class,
along with some special-case behavior

10

class <Name>(<Base Class>):
 <suite>

Conceptually, the new subclass inherits attributes of its base class

The subclass may override certain inherited attributes

Using inheritance, we implement a subclass by specifying its differences
from the the base class

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

11

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

12

(Demo)

Object-Oriented Design

Designing for Inheritance

Don't repeat yourself; use existing implementations

Attributes that have been overridden are still accessible via class objects

Look up attributes on instances whenever possible

Attribute look-up
on base class

Preferred to CheckingAccount.withdraw_fee
to allow for specialized accounts

14

class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01
 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor

Inheritance is best for representing is-a relationships

• E.g., a checking account is a specific type of account

• So, CheckingAccount inherits from Account

Composition is best for representing has-a relationships

• E.g., a bank has a collection of bank accounts it manages

• So, A bank has a list of accounts as an attribute

15

(Demo)

Multiple Inheritance

Multiple Inheritance

class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

A class may inherit from multiple base classes in Python

CleverBank marketing executive has an idea:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits
• A free dollar when you open your account

17

Multiple Inheritance

A class may inherit from multiple base classes in Python.

class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance

1
>>> such_a_deal.deposit(20)

19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

18

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount('John')

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)
19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

Complicated Inheritance

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble

Quadruple

Mom Dad

You

Half

some_guy

Double Half Uncle

Half Cousin

some_other_guy

Double

Moral of the story: Inheritance can be complicated, so don't overuse it!

