
61A Lecture 7

Announcements

Hog Contest Rules

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

3cs61a.org/proj/hog_contest

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Slight rule changes

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited

• All strategies must be deterministic,
pure functions of the players' scores

• All winning entries will receive
extra credit

• The real prize: honor and glory
• See website for detailed rules

3cs61a.org/proj/hog_contest

Kaylee Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Fall 2014 Winners

Hog Contest Winners

4

Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Spring 2015 Winners

Micah Carroll & Vasilis Oikonomou 
Matthew Wu 
Anthony Yeung and Alexander Dai

Fall 2015 Winners

Spring 2016 Winners

Michael McDonald and Tianrui Chen
Andrei Kassiantchouk
Benjamin Krieges

Spring 2017 Winners

Cindy Jin and Sunjoon Lee
Anny Patino and Christian Vasquez
Asana Choudhury and Jenna Wen
Michelle Lee and Nicholas Chew

Fall 2017 Winners

Your name could be here FOREVER!

Order of Recursive Calls

The Cascade Function

(Demo)

6Interactive Diagram

The Cascade Function

(Demo)

6Interactive Diagram

The Cascade Function

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

6Interactive Diagram

The Cascade Function

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

(Demo)

6Interactive Diagram

Two Definitions of Cascade

7

(Demo)

Two Definitions of Cascade

7

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

Two Definitions of Cascade

7

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

Two Definitions of Cascade

7

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

Two Definitions of Cascade

7

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

Two Definitions of Cascade

7

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

9

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

9

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

9

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

9

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

9

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

1  
12  
123 
1234 
123 
12  
1

Inverse Cascade

Write a function that prints an inverse cascade:

9

grow = lambda n: f_then_g(grow, print, n//10)
shrink = lambda n: f_then_g(print, shrink, n//10)

def f_then_g(f, g, n):
 if n:
 f(n)
 g(n)

1  
12  
123 
1234 
123 
12  
1

def inverse_cascade(n):
 grow(n)
 print(n)
 shrink(n)

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

0, 1, 2, 3, 4, 5, 6, 7, 8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 9,227,465

 ... , 35

def fib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

11

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(3)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)fib(3)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

12

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

Repetition in Tree-Recursive Computation

13

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

13

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times

13

Repetition in Tree-Recursive Computation

fib(5)

fib(3)

fib(1)

1

fib(4)

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

This process is highly repetitive; fib is called on the same argument multiple times

13

(We will speed up this computation dramatically in a few weeks by remembering results)

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

15

count_partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

16

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

count_partitions(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

17

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• count_partitions(2, 4)

• count_partitions(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

Interactive Diagram

