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Zhenyang Zhang 
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Sinho Chewi & Alexander Nguyen Tran 
Zhaoxi Li 
Stella Tao and Yao Ge

Spring 2015 Winners

Micah Carroll & Vasilis Oikonomou 
Matthew Wu 
Anthony Yeung and Alexander Dai

Fall 2015 Winners

Spring 2016 Winners 

Michael McDonald and Tianrui Chen 
Andrei Kassiantchouk 
Benjamin Krieges 

Spring 2017 Winners 

Cindy Jin and Sunjoon Lee 
Anny Patino and Christian Vasquez 
Asana Choudhury and Jenna Wen 
Michelle Lee and Nicholas Chew

Fall 2017 Winners

Your name could be here FOREVER!
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Two Definitions of Cascade

7

def cascade(n): 
    if n < 10: 
        print(n) 
    else: 
        print(n) 
        cascade(n//10) 
        print(n)

def cascade(n): 
    print(n) 
    if n >= 10: 
        cascade(n//10) 
        print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better

• In this case, the longer implementation is more clear (at least to me)

• When learning to write recursive functions, put the base cases first

• Both are recursive functions, even though only the first has typical structure
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0, 1, 2, 3, 4, 5, 6,  7,  8,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):  ... ,   9,227,465

 ... ,          35

def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive function makes more 
than one recursive call
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(We will speed up this computation dramatically in a few weeks by remembering results)
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