

Hog Contest Rules	
- Up to two people submit one entry;	Fall 2011 Winners
Max of one entry per person	Kaylee Mann
- Slight rule changes	Yan Duan \& Ziming Li
- Your score is the number of entries	Brian Prike \& Zhenghao Qian
against which you win more than	Parker Schuh \& Robert Chatham
50.00001\% of the time	Fall 2012 Winners
- Strategies are time-limited	Chenyang Yuan
- All strategies must be deterministic,	Joseph Hui
pure functions of the players' scores	Fall 2013 Winners
- All winning entries will receive	Paul Bramsen
extra credit	Sam Kumar \& Kangsik Lee
- The real prize: honor and glory	Kevin Chen
- See website for detailed rules	Fall 2014 Winners
	Alan Tong \& Elaine Zhao
	Zhenyang Zhang
	Adam Robert Villaflor \& Joany Gao
	Zhen Qin \& Dian Chen
	Zizheng Tai \& Yihe Li

\square

Two Definitions of Cascade	
(Demo)	
def cascade $(n):$ def $\operatorname{cascade}(n):$ if $n<10:$ $\operatorname{print}(n)$ print (n) if $n>=10:$ else: $\operatorname{cascade}(n / / 10)$ $\quad \operatorname{print}(n)$ $\operatorname{cascade}(n / / 10)$ $\quad \operatorname{print}(n)$	
- If two implementations are equally clear, then shorter is usually better - In this case, the longer implementation is more clear (at least to me) - When learning to write recursive functions, put the base cases first - Both are recursive functions, even though only the first has typical structure	

\square

Tree Recursion

than one recursive call

A Tree-Recursive Process
The computational process of fib evolves into a tree structure

Example: Counting Partitions

Counting Partitions The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in

 increasing order.

```
Counting Partitions
The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which
    Recursive decomposition: finding
    simpler instances of the problem.
    Explore two possibilities:
    Use at least one 4
    Don't use any 4
    Solve two simpler problems:
    e problems: els
```



```
    count_partitions(6, 3) ----------------->}\mathrm{ return with_m + without_m
    Tree recursion often involve
    exploring different choices.
        (Demo)```

