
SQL AND FINAL REVIEW

COMPUTER SCIENCE MENTORS 61A

November 27 to December 1, 2017

1 Creating Tables, Querying Data

Examine the table, mentors, depicted below.

Name Food Color Editor Language
Tiffany Thai Purple Notepad++ Java
Diana Pie Green Sublime Java
Allan Sushi Orange Emacs Ruby

Alfonso Tacos Blue Vim Python
Kelly Ramen Green Vim Python

1. Create a new table mentors that contains all the information above. (You only have
to write out the first two rows.)

1

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 2

2. Write a query that lists all the mentors along with their favorite food if their favorite
color is green.
Output:
Diana|Pie
Kelly|Ramen

3. Write a query that lists the food and the color of every person whose favorite language
is NOT Python.
Output:
Sushi|Orange
Pie|Green
Thai|Purple

4. Write a query that lists all the pairs of mentors who like the same language. (How can
we make sure to remove duplicates?)
Output:
Kelly|Alfonso
Tiffany|Diana

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 3

2 Fish Population

The 61A mentors want to start a fish hatchery, and they need your help to analyze the
data they’ve collected for the fish populations! Also, running a hatchery is expensive
– they’d like to make some money on the side by selling some seafood (only older
fish of course) to make delicious sushi.

The following table contains a subset of the data that has been collected. The
SQL column names are listed in brackets. Note: we must be able to extend your
queries to larger tables! (i.e, don’t hard code your answers)

Table name: fish*
Species Population Breeding Rate $/piece # of pieces per fish
[species] [pop] [rate] [price] [pieces]
Salmon 500 3.3 4 30

Eel 100 1.3 4 15
Yellowtail 700 2.0 3 30

Tuna 600 1.1 3 20

*(This was made with fake data, do not actually sell fish at these rates)

5. Aggregation Hint: The aggregate functions MAX, MIN, COUNT, and SUM return the
maximum, minimum, number, and sum of the values in a column. The GROUP BY
clause of a select statement is used to partition rows into groups.

(a) Write a query to find the three most populated fish species.

(b) Profit is good, but more profit is better. Write a query to select the species that
yields the most number of pieces for each price. Your output should include the
species, price, and pieces.

(c) Write a query to find the total number of fish in the ”ocean.” Additionally, include
the number of species we summed. Your output should have the number of species
and the total population.

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 4

(d) Business is good, but a bunch of competition has sprung up! Through some
cunning corporate espionage, we have determined that one such competitor plans to
open shop with the following rates:

Table name: competitor

Species $/piece
[species] [price]
Salmon 2

Eel 3.4
Yellowtail 3.2

Tuna 2.6

Write a query that returns, for each species, the difference between our hatcherys
revenue versus the competitors revenue for one whole fish. For example, the table
should contain the following row:
Salmon | 60

We make 30 pieces of salmon at $4 for a total revenue of $120, whereas the
competitor makes 30 pieces at $2 a piece for a total revenue of $60. The difference is
$60. Remember to do this for every species!

6. Recursive Select Suppose these fish breed every day. The population of each fish gets
multiplied by its breeding rate every year. Write a recursive select query that creates
a table of fish 10 years from now.

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 5

FINAL REVIEW

3 Environment Diagrams

1. Draw the environment diagram for the following code snippet:
def one(two):

three = two
def four(five):

nonlocal three
if len(three) < 1:

three.append(five)
five = lambda x: four(x)

else:
five = seven + 7

return five
two = two + [1]
seven = 8
return four(three)

eight = one([])
print(eight(9))

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 6

4 Recursive Data Structures

2. DoubleTree hired you to architect one of their hotel expansions! As you might expect,
their floor plan can be modeled as a tree and the expansion plan requires doubling
each node (the patented double tree floor plan). Here’s what some sample expansions
look like:

Before After

1

2 3

1

1

2

2

3

3

Fill in the implementation for double_tree.
def double_tree(t):

"""
Given a tree, return a new tree where entries appear
twice.
>>> double_tree(Tree(1))
Tree(1, [Tree(1)])
>>> double_tree(Tree(1, [Tree(2), Tree(3)]))
Tree(1, [Tree(1, [Tree(2, [Tree(2)]),

Tree(3, [Tree(3)])
])

])
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 7

3. Fill in the implementation of double_link.
def double_link(lst):

"""
Using mutation, replaces the second in each pair of items
with the first. The first of each pair stays as is.

Returns the list.
>>> double_link(Link(1, Link(2, Link(3, Link(4)))))
Link(1, Link(1, Link(3, Link(3))))
>>> double_link(

Link('c', Link('s', Link(6, Link(1, Link('a')))))
)

Link('c', Link('c', Link(6, Link(6, Link('a')))))
"""
if __:

return __________________________________

return ______________________________________

4. Fill in the implementation of shuffle.
def shuffle(lst):

"""
Swaps each pair of items in a linked list.
>>> shuffle(Link(1, Link(2, Link(3, Link(4)))))
Link(2, Link(1, Link(4, Link(3))))
>>> shuffle(

Link('s', Link('c', Link(1, Link(6, Link('a')))))
)

Link('c', Link('s', Link(6, Link(1, Link('a')))))
"""
if ___

return _______________________________________
new_head = lst.rest
lst.rest = ___
__
return ___

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 8

5 Scheme

5. Write a Scheme function insert that creates a new list that would result from insert-
ing an item into an existing list at the given index. Assume that the given index is
between 0 and the length of the original list, inclusive.
(define (insert lst item index)

)

Extra: Write this as a tail recursive function. Assume append is tail recursive.

6 Recursive Select in SQL

6. Create a mod_seven table that has two columns, a number from 0 to 100 and then its
value mod 7.
Hint: You can create a table first with all of the initial data you will build from, and
then build the mod_seven table.

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 10: SQL AND FINAL REVIEW Page 9

7 Iterators, Generators, and Streams

7. Implement run_length_decoder, a generator that yields the decoded run length
sequence from a list of (value, length) pairs.
def run_length_decoder(encoding):

"""
>>> rld = run_length_decoder([('h', 1), ('e', 1), ('l',

2), ('o', 1)])
>>> lst(rld)
['h', 'e', 'l', 'l', 'o']
"""

8. (a) You and your CS 61A friends are cons. You cdr’d just studied for the final, but
instead you scheme to drive away across a stream in a car during dead week. Of
course, you would like a variety of food to eat on your road trip.

Write an infinite stream that takes in a list of foods and loops back to the first food
in the list when the list is exhausted.
(define (food-stream foods)

(b) We discover that some of our food is stale! Every other food that we go through
is stale, so put it into a new stale food stream. Assume is-stale starts off at 0.
(define (stale-stream foods is-stale)

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

