MORE SCHEME

COMPUTER SCIENCE MENTORS 61A

October 30 to November 3, 2017

What Would Scheme Print?

1. What will Scheme output? Draw box-and-pointer diagrams to help determine this.

(@) (cons (cons 1 nil) (cons 2 (cons (cons 3 (cons 4 5)) (cons
6 nil))))

(b) (define a 4)
((lambda (x y) (+ a)) 1 2)

(c) ((lambda (x y z) (y x)) 2 / 2)

(d) ((lambda (x) (x x)) (lambda (y) 4))
(e) (define booml (/ 1 0))

(f) booml

(g) (define boom2 (lambda () (/ 1 0)))

(h) (boom2)



GROUP TUTORING HANDOUT 7: MORE SCHEME Page 2
(i) Why/How are the two “boom” definitions above different?

(j) How can we rewrite boom?2 without using the lambda operator?

2. What will Scheme output?
(@) (if (/ 1 0) 1 0)

(b)y (A€ 1 1 (/ 1 0))

() (if 0 (/ 1 0) 1)

(d) (and 1 #£f (/ 1 0))

(e) (and 1 2 3)

(f) (or #f #£ 0 #f (/ 1 0))
(g) (or #f #f (/ 1 0) 3 4)

(h) (and (and) (or))

(i) Given the lines above, what can we say about interpreting if expressions and
booleans in Scheme?

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 7: MORE SCHEME Page 3

3. The following line of code does not work. Why? Write the lambda equivalent of the
let expressions.
(let ((foo 3)
(bar (+ foo 2)))
(+ foo bar))

Scoping

4. What is the difference between dynamic and lexical scoping?

5. What would this print using lexical scoping? What would it print using dynamic
scoping?
a = 2
def foo():
a = 10
return lambda x: x + a
bar = foo()
bar (10)

6. How would you modify and environment diagram to represent dynamic scoping?

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 7: MORE SCHEME Page 4

7. Implement waldo. waldo returns #t if the symbol waldo is in a list. You may
assume that the list passed in is well-formed.

scm> (waldo '(1 4 waldo))
#t

scm> (waldo ' ())

#f

scm> (waldo '"(1 4 9))

#f

Extra challenge: Define waldo so that it returns the index of the list where the symbol
waldo was found (if waldo is not in the list, return #£).

scm> (waldo '(1 4 waldo))
2

scm> (waldo ' ())

#f

scm> (waldo '"(1 4 9))

#f

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 7: MORE SCHEME Page 5

Challenge Question

8. (Optional) From CS61A Fall 2017 Discussion 6: The quicksort sorting algorithm is an
efficient and commonly used algorithm to order the elements of a list. We choose one
element of the list to be the pivot element and partition the remaining elements into
two lists: one of elements less than the pivot and one of elements greater than the
pivot. We recursively sort the two lists, which gives us a sorted list of all the elements
less than the pivot and all the elements greater than the pivot, which we can then
combine with the pivot for a completely sorted list.

Implement quicksort in Scheme. Choose the first element of the list as the
pivot. You may assume that all elements are distinct. Hint: you may want to use a
helper function.

scm> (quicksort (list 5 2 4 3 12 7))

(2 345 7 12)

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



