
LINKED LISTS

COMPUTER SCIENCE MENTORS 61A

October 16 to October 20, 2017

For each of the following problems, assume linked lists are defined as follows:

class Link:

empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

To check if a Link is empty, compare it against the class attribute Link.empty:

if link is Link.empty:
print('This linked list is empty!')

1



GROUP TUTORING HANDOUT 5: LINKED LISTS Page 2

1 What Would Python Print?

1. What will Python output? Draw box-and-pointer diagrams to help determine this.
>>> a = Link(1, Link(2, Link(3)))
>>> a.first

>>> a.first = 5
>>> a.first

>>> a.rest.first

>>> a.rest.rest.rest.rest.first

>>> a.rest.rest.rest = a
>>> a.rest.rest.rest.rest.first

2 Code Writing Questions

2. Write a function skip, which takes in a Link and returns a new Link.
def skip(lst):

"""
>>> a = Link(1, Link(2, Link(3, Link(4))))
>>> a
Link(1, Link(2, Link(3, Link(4))))
>>> b = skip(a)
>>> b
Link(1, Link(3))
>>> a
Link(1, Link(2, Link(3, Link(4)))) # Original is unchanged
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 5: LINKED LISTS Page 3

3. Now write function skip by mutating the original list, instead of returning a new list.
Do NOT call the Link constructor.
def skip(lst):

"""
>>> a = Link(1, Link(2, Link(3, Link(4))))
>>> b = skip(a)
>>> b
Link(1, Link(3))
>>> a
Link(1, Link(3))
"""

4. Write a function reverse, which takes in a Link and returns a new Link that has
the order of the contents reversed.
Hint: You may want to use a helper function if you’re solving this recursively.
def reverse(lst):

"""
>>> a = Link(1, Link(2, Link(3)))
>>> b = reverse(a)
>>> b
Link(3, Link(2, Link(1)))
>>> a
Link(1, Link(2, Link(3)))
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 5: LINKED LISTS Page 4

5. (Optional) Now write reverse by modifying the existing Links. Assume reverse
returns the head of the new list (so the last Link object of the previous list).

First, draw out the box and pointer for the following:
>>> a = Link(1, Link(2))
>>> a.rest.rest = a
>>> a.rest = Link.empty

Observe how the pointers change, as well as the order in which they are modified.

Now, generalize this to reverse an entire linked list.
def reverse(lst):

"""
>>> a = Link(1, Link(2, Link(3)))
>>> b = reverse(a)
>>> b
Link(3, Link(2, Link(1)))
>>> a
Link(3, Link(2, Link(1)))
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff



GROUP TUTORING HANDOUT 5: LINKED LISTS Page 5

6. (Optional) Write has_cycle which takes in a Link and returns True if and only if
there is a cycle in the Link.
def has_cycle(s):

"""
>>> has_cycle(Link.empty)
False
>>> a = Link(1, Link(2, Link(3)))
>>> has_cycle(a)
False
>>> a.rest.rest.rest = a
>>> has_cycle(a)
True
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff


