
TREES AND ORDERS OF GROWTH

COMPUTER SCIENCE MENTORS 61A

October 2 to October 6, 2017

1 Trees

Things to remember:
def tree(label, branches=[]):

return [label] + list(branches)

def label(tree):
return tree[0]

def branches(tree):
return tree[1:]

1. Draw the tree that is created by the following statement:
tree(4,

[tree(5, []),
tree(2,

[tree(2, []),
tree(1, [])]),

tree(1, []),
tree(8,

[tree(4, [])])])

1

GROUP TUTORING HANDOUT 3: TREES AND ORDERS OF GROWTH Page 2

2. Construct the following tree and save it to the variable t.

9

2 4

1

4

7 3

3. What would this output?
>>> label(t)

>>> branches(t)[2]

>>> branches(branches(t)[2])[0]

4. Write the Python expression to return the integer 2 from t.

5. Write the function sum_of_nodes which takes in a tree and outputs the sum of all
the elements in the tree.
def sum_of_nodes(t):

"""
>>> t = tree(...) # Tree from question 2.
>>> sum_of_nodes(t) # 9 + 2 + 4 + 4 + 1 + 7 + 3 = 30
30
"""

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 3: TREES AND ORDERS OF GROWTH Page 3

2 Orders of Growth

6. In big-Θ notation, what is the runtime for foo?
(a) def foo(n):

for i in range(n):
print('hello')

(b) What’s the runtime of foo if we change range(n):

i. To range(n / 2)?

ii. To range(10)?

iii. To range(10000000)?

7. What is the order of growth in time for the following functions? Use big-Θ notation.
(a) def strange_add(n):

if n == 0:
return 1

else:
return strange_add(n - 1) + strange_add(n - 1)

(b) def stranger_add(n):
if n < 3:

return n
elif n % 3 == 0:

return stranger_add(n - 1) + stranger_add(n - 2) +
stranger_add(n - 3)

else:
return n

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 3: TREES AND ORDERS OF GROWTH Page 4
(c) def waffle(n):

i = 0
total = 0
while i < n:

for j in range(50 * n):
total += 1

i += 1
return total

(d) def belgian_waffle(n):
i = 0
total = 0
while i < n:

for j in range(n ** 2):
total += 1

i += 1
return total

(e) def pancake(n):
if n == 0 or n == 1:

return n
Flip will always perform three operations and return

-n.
return flip(n) + pancake(n - 1) + pancake(n - 2)

(f) def toast(n):
i = 0
j = 0
stack = 0
while i < n:

stack += pancake(n)
i += 1

while j < n:
stack += 1
j += 1

return stack

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

GROUP TUTORING HANDOUT 3: TREES AND ORDERS OF GROWTH Page 5

8. Consider the following functions:
def hailstone(n):

print(n)
if n < 2:

return
if n % 2 == 0:

hailstone(n // 2)
else:

hailstone((n * 3) + 1)

def fib(n):
if n < 2:

return n
return fib(n - 1) + fib(n - 2)

def foo(n, f):
return n + f(500)

In big-Θ notation, describe the runtime for the following:

(a) foo(10, hailstone)

(b) foo(3000, fib)

9. Orders of Growth and Trees: Assume we are using the non-mutable tree implemen-
tation introduced in discussion. Consider the following function:
def word_finder(t, p, word):

if root(t) == word:
p -= 1
if p == 0:

return True
for branch in branches(t):

if word_finder(branch, p, word):
return True

return False

(a) What does this function do?

(b) If a tree has n total nodes, what is the total runtime in big-Θ notation?

Computer Science Mentors CS61A Fall 2017: Paul Bitutsky and Jason Goodman, with
Colin Schoen, Kevin Lin, Thomas Zhang, Danelle Nachum, Jennie Chen, Nipun Ramakrishnan, Christopher Allsman,
Nikunj Jain, Shreya Sahoo, Joshua Zeitsoff

